Computing Polynomial Conformal Models for Low-Degree Blaschke Products
نویسندگان
چکیده
منابع مشابه
Two-dimensional Blaschke Products: Degree Growth and Ergodic Consequences
We study the dynamics of Blaschke products in two dimensions, particularly the rates of growth of the degrees of iterates and the corresponding implications for the ergodic properties of the map.
متن کاملLow-Degree Polynomial Roots
5 Cubic Polynomials 7 5.1 Real Roots of Multiplicity Larger Than One . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.2 One Simple Real Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5.3 Three Simple Real Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5.4 A Mixed-Type Implementation . . . . . . . . . . . . ....
متن کاملComputable Analysis and Blaschke Products
We show that if a Blaschke product defines a computable function, then it has a computable sequence of zeros in which the number of times each zero is repeated is its multiplicity. We then show that the converse is not true. We finally show that every computable, radial, interpolating sequence yields a computable Blaschke product.
متن کاملBoundary Interpolation by Finite Blaschke Products
Given 2n distinct points z1, z′ 1, z2, z ′ 2, . . . , zn, z ′ n (in this order) on the unit circle, and n points w1, . . . , wn on the unit circle, we show how to construct a Blaschke product B of degree n such that B(zj) = wj for all j and, in addition, B(z′ j) = B(z ′ k) for all j and k. Modifying this example yields a Blaschke product of degree n− 1 that interpolates the zj ’s to the wj ’s. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Methods and Function Theory
سال: 2019
ISSN: 1617-9447,2195-3724
DOI: 10.1007/s40315-018-0259-x